Characteristics of transfer functions


2. Characteristics of transfer functions

2.1 Modeling of Dynamic systems

Modeling of dynamic systems is concerned with cause and effect relationship between inputs (X) and outputs (Y). The simplest model has only one input and output (SISO = Single input, Single Output). The input and the output are variables of real process with physical dimension. 

In the actual application the input and output are assigned to a limited area (Xmin, Xmax and Ymin, Ymax). The following expressions show how you can involve the model equations dimensionless:
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<2.1.a.>
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<2.1.b.>

Using dimensionless variables the model equations will involve time as a variable, primarily in the form of derivatives. There are a lot of methods to involve these differential equations if the process can be modeled as a LTI (Linear Time Invariant) system. 

Note: The system is linear if the superposition is available. The super-position  means if you energized the system an arbitrary input signal X1 and the response output signal is Y1 after energized the system an other arbitrary input signal X2 and the response output signal is Y2 than energized the system X1+X2 signal the response will be Y1+Y2. 

The Laplace transform of a function of time, f(t), is written as the integral 
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 and the initial conditions are zero:
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<2.2.>

The Laplace transform converts the system from time domain to s-domain. The s-domain implicit contains the frequency domain. The Laplace transform is a linear transformation  consequently
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Supposing that the process operates in steady-state at the working point one (X1, Y1) when the input signal start to change (X1+x(t)). The output response is (Y1+y(t)). You see on the Fig. 2.1, the initial conditions of x(t) and y(t) signals are zero, and if the x(t) and y(t) signals are sufficiently small than the process can be modeled as an LTI system. Final the process will operate in steady-state at the working point two (X2, Y2).
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Figure 2.1. Steady-State characteristics and dynamic response

Hereinafter we will examine only LTI system. The dynamic behavior of LTI system can be written linear time invariant differential equitation. 


[image: image8.wmf]1

110

1

110

()()()

()

()()()

()

nn

nn

mm

mm

dytdytdyt

aaaayt

dtdtdt

dxtdxtdxt

bbbbxt

dtdtdt

-

-

-

-

++++=

=++++

L

L


<2.3.a.>

Note: The system is proper if 
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 and strictly proper if 
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The Laplace transform is:
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<2.3.b.>

Arranged this equation:
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<2.4.a.>

The G(s) is called transfer function. 

The other form of the transfer function is the so called zero-pole form. Arranged the 2.4.a:
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<2.4.b.>

where zj are the zeros and pi are the poles, and the gain is signed 
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The Bode form of the transfer function is generated from the zero-pole form. Arranged the 2.4.b if all roots are real numbers:
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<2.4.c.>

where 
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 are the time constants of the transfer function.

If there is a complex conjugate pair of roots than first they are multiplied and after arranged it, for example: 
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<2.4.d>

where 
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 is the time constants of the transfer function and 
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 where D is named damping ratio. If D < 1 than there is a complex conjugate pair of roots, else the roots are real numbers.

If you define this transfer function in MATLAB you should give a concrete value the polynomial coefficients of numerator and denominator. For example:
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<2.5.>

The syntax of the tf command the next: 

tf([num],[den]) 

where num is the polynomial coefficient in descending order in degree of numerator and den is the polynomial coefficient in descending order in degree of denominator. 

The square brackets aren’t required if the polynomial’s order is zero, otherworld it is a constant. 

Type the expression 2.5 into a MATLAB’s M-file:

G1=tf([2 4.1],[3.5 1.7 2.3])

Use the Save File and Run item of Debug menu! On the Command window the following answer appears.

Transfer function

    2s+4.1

---------------

3.5s^2+1.7s+2.3

You define the zero-pole form of a transfer function in MATLAB. Of course you must give a concrete value the roots! The syntax of the zpk command the next: 

zpk([zeros of num],[poles of den],gain)

If you have the G1 variable in transfer function form and you want to use the pole-zero form of this transfer function it is easy to convert it. If the G1 variable is being it is enough to type the next:

G1=zpk(G1)

Use the Save File and Run item of Debug menu!

Zero/pole/gain

   0.57143(s+2.05)

--------------------

(s^2+0.7857s+0.6571)

Of course if the G1 variable is being in zero-pole form you can convert it using the G1=tf(G1) command.

Note: Unfortunately there isn’t command to define a transfer function in Bode form.

The syntax of the all commands whose operand has transfer function type (impulse, step, bode, nyquist, and so on) are the following: command(name of transfer function). For example step(G1) which figures the unit step response of the G1(s) transfer function. It is possible to see more transfer function together typing step(G1,G2).

2.2 Block diagram representation

The basic block diagram element, called block, is a box with one input and one output (Fig. 2.2.a.). The direction of flow from input to output is indicated by arrows. This box contains the transfer functions, G(s), expressing the dynamical relationship between its input and output. 

Note: Sometimes we use the block to represent the steady-state relationship or the non-linear behavior.

When a signal goes two destinations you can use the takeoff point as shown in Fig. 2.2.b. The summing junction is used to represent the addition or subtraction of signals as shown in Fig. 2.2.c. These three graphical objects are enough to represent more complex linear system. The arrows show the direction of the signal flow.
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Figure 2.2. Graphical elements of block diagram

The great advantages of the block diagram representation are that they clearly show the cause and the effect relationship of system components and how the elements of the system are interconnected. 

The advantages of the s-domain is to give simply method to deduce the transfer function of a complicated time-domain linear system. The s-domain functions are known as block’s transfer functions.

Blocks in cascade

Resulting transfer function is given by multiplying the two transfer function of the blocks.
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Figure 2.3. Block in cascade

Blocks in parallel 

Resulting transfer function is given by adding the two transfer function of the blocks.
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Figure 2.4. Block in parallel

Blocks in feedback 

Numerator of the resulting transfer function equals to the block in the forward branch, and the denominator is given one and plus-minus the blocks in the loop in cascade.
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Figure 2.5. Block in parallel

In generally if the feedback is negative the denominator of resulting transfer function contains the plus sign.

2.3 Basic transfer functions

The nature of a transfer function can be proportional, integral, or differential. The speed of response of the system depends on its time constants. Some transfer functions have special nature, when the response of the block repeats the input signal with delayed it in time. It is called delay time, transport time, or dead time.

The most complicated transfer function of a linear system can be built only six basic transfer functions connected them cascade, parallel, and feedback. These are the proportional tag signed by P, the integral tag signed by I, the differential tag signed by D, the dead time tag signed by H, accordingly a first order tag signed PT1 and the second order tag signed  PT2.

We will define the transfer functions and differential equations, and plot and analyze the unit step responses and bode diagrams of these basic tags. 

P proportional tag

The nature of the proportional tag is that the output repeats the shape of the input signal, only gains it. The sign of the gain is K. 

The differential equitation: 
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The transfer function
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If you want to define this transfer function in MATLAB you must give a concrete value of the gain K. The name of the proportional tag transfer function is 
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 and the name is GP. Type it an M-file:

K=2.4;

GP=tf(K,1)

Use the Save File and Run item of Debug menu! Two variables (K, GP) come into being in the Workspace and the result of the command lines is highlight on the Command window:

Transfer function

2.4
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Figure 2.6. Unit step response of proportional tag

If the GP transfer function type variable is available in the Workspace you can create the figure of impulse or step response in time-domain of the proportional tag, typing the impulse or step command. 

step(GP)

The response signal is on the Fig. 2.6. With the Data Cursor you can see the value of the gain.

The Bode or the Nyquist diagram of a transfer function can be drawn by typing the bode or nyquist command.

bode(GP)
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Figure 2.7. Bode diagram of proportional tag

You can read the gain’s value on the Fig. 2.7 in decibel. Typing the 
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 expression on the Command window you will receive 2.988 as the gain’s value for result which is 2.4 for the engineers.

Note: MATLAB automatically offers an area of time or frequency for the figures. You can change it. For example:

t=0:0.05:2.5;

step(GP,t)

I integral tag

The nature of the integral tag is that the output increases or decreases while the input signal isn’t zero. The KI integral coefficient or TI integral time constant describes the speed of the changes in the output. 

The differential equitation: 
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The transfer function
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When you define this transfer function in MATLAB you must give a concrete value of the integral coefficient KI or integral time constant TI, and a name of the integral tag’s transfer function
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 and the name is GI! Type it an M-file:

TI=2.4;

GI=tf(1,[TI 0])

Use the Save File and Run item of Debug menu! Two variables (TI, GI) come into being in the Workspace and the result of the command lines is highlight on the Command window:

Transfer function

 1

----

2.4s

Type the step(GI) command to see the unit step response (Fig. 2.8). On the Fig. 2.8 we show how you can count the value of TI from arbitrary two point of line. Counting of KI is similar, because of next expression: 
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Type the bode(GI) command to see the Bode diagram (Fig. 2.9)! On the Fig. 2.9 you can see the dialog box shown by right mouse click, the items of Characteristic and Minimum Stability Margins are chosen. The gain and phase crossover frequencies are highlighted after using these items. (The Fig 2.9 only has gain crossover frequency) 

The phase margin belongs to the gain crossover frequency and indicated on the Bode phase diagram. After left mouse click on the point a dialog box appears with detailed information. The value of the gain crossover frequency in rad./sec. is equal the value KI in 1/sec.
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Figure 2.8. Unit step response of integral tag
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Figure 2.9. Bode diagram of integral tag

D differential tag

The nature of the differential tag is that the output is zero while the input signal is a constant. The KD differential coefficient or TD differential time constant describes the gain of the speed of the changes in the input. 

The differential equitation: 
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The transfer function
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Figure 2.10. Bode diagram of differential tag

When you define this transfer function in MATLAB you must give a concrete value of the differential coefficient KD or differential time constant TD, and a name of the differential tag’s transfer function
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 and the name is GD! Type it an M-file:

TD=0.4;

GD=tf([TD 0],1)

Use the Save File and Run item of Debug menu! Two variables (TD, GD) come into being in the Workspace and the result of the command lines is highlighted on the Command window:

Transfer function

0.4s

If we type the step(GI) command the MATLAB sends an error messages on The Command window. It isn’t able to plot the theoretic Direct delta δ(t) signal. 

Type the bode(GD) command to see the Bode diagram! The reciprocal value of the gain crossover frequency in rad./sec. equals the differential time constant value in sec. shown it on the Figure 2.10.

H dead time tag

The nature of the dead time tag is that the output repeats the shape of the input signal, only delays it. The sign of delay time is τ. 

The differential equitation: 
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The transfer function
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When you define this transfer function in MATLAB you must give a concrete value of the delay time constant τ and a name of the dead time tag’s transfer function
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 and the name is GH. The transfer function of dead time is transcendent and so it needs a special tf command. Type the following an M-file:

Tau=0.1;

GH=tf(1,1,’inputdelay’,0.1)

Use the Save File and Run item of Debug menu! Two variables (Tau, GH) come into being in the Workspace and the result of the command lines is highlight on the Command window:

Transfer function

Exp(-0.1*s)*(1)

Note: Instead of 1,1 part of this tf command you can type arbitrary transfer function.

Type the step(GH) command to see (Fig. 2.11) the unit step response. On the Fig. 2.11 we show how you can read the value of Tau. 

Note: We plot the Fig. 2.11 define the t=0:0.001:0.8 time variable and type the tf(GH,t) command.

Type the bode(GI) command to see the Bode diagram (Fig. 2.12)! On the Fig. 2.12 we show how you can read the value of Tau.

On the Fig. 2.12 you can see the very strong phase shift caused by the dead time.
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Figure 2.11. Unit step response of dead time tag

[image: image51.png]Figure 1

Eile Edit View Ineert Took Desktop Window Help

NEde | h]RAUDEL-(E[08 [ aD

Bode Diagram

I
£

System: GH
Frequency (radisec) 10
Phase (deg): 57 4

=

wH=10 rad.fsec. Tau=0.1 sec.

Phase (deg)

10’

Frectieqey (radisec)




Figure 2.12. Unit step response of dead time tag

PT1 first order tag

The nature of the first order tag is that the output increases with decreasing speed until the output reached the final value. The T time constant describe the required settling time. 

The differential equitation: 
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The transfer function
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When you define this transfer function in MATLAB you must give a concrete value of the time constant T, and a name of the first order tag’s transfer function
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 and the name is GT1! Type it an M-file:

T=4;

GT1=tf(1,[T 1])

Use the Save File and Run item of Debug menu! Two variables (T, GT1) come into being in the Workspace and the result of the command lines is highlight on the Command window:

Transfer function

 1

----

4s+1

Type the step(GT1) command! On the Fig. 2.13 we show where you can read the value of T and one percent settling time Ts1%. 

Involving the differential equitation energized the PT1 tag by unit step (
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 the value is 
[image: image61.wmf](4)0.9817

yT

=
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 the value is
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. You can find the T time constant and the two percent settling time Ts2% or the one percent settling time Ts1% on the curve of the step response of first order tag as shown on the Fig. 2.13.

Type the bode(GT1) command! On the Fig. 2.14 you can read the T time constant in second as the reciprocal value of the frequency in rad./sec. at the -45º phase shift and also this frequency is called break-point frequency where the amplitude value is -3 dB.
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Figure 2.13. Unit step response of first order tag
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Figure 2.14. Bode diagram of first order tag

PT2 second order tag

The nature of the second order tag is that the oscillatory behavior of the output signal is possible. The T time constant the D damping ratio is required to define a second order tag. 

The differential equitation: 
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The transfer function
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If you want to define this transfer function in MATLAB you must give a concrete value of the time constant T and D damping ratio, and a name of the first second tag’s transfer function
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 condition the transfer function of PT2 tag is decomposed two PT1 tags in cascade, but if 
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 this way is not possible. We will examine only the 
[image: image71.wmf]1

D

<

 condition with different D values.

For example be the value of the time constant 
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, and the name is GT2! Type it an M-file:

T=2;

D1=0.8;

D2=0.4;

D3=0.1;

GT2D1=tf(1,[T^2 2*D1*T 1])

GT2D2=tf(1,[T^2 2*D2*T 1])

GT2D3=tf(1,[T^2 2*D3*T 1])

Use the Save File and Run item of Debug menu! The new variables (T, D1, D2, D3, GT2D1, GT2D2, GT2D3) come into being in the Workspace and the result of the command lines is highlight on the Command window:

Transfer function

     1

------------

4s^2+3.2s+1

Transfer function

     1

------------

4s^2+1.6s+1

Transfer function

     1

------------

4s^2+0.4s+1

Type the step(GT2D1,GT2D2,GT2D3) command! Use the Save File and Run item of Debug menu! 

[image: image76.png]Figure 1
Eile Edit View Ineert Took Desktop Window Help

NEde | h]RAUDEL-(E[08 [ aD

Step Response

Cl

Time (sec)
.





Figure 2.15. Unit step response of second order tag with different D values

You can see on Fig. 15 the smaller value of damping ratio causes higher amplitude of the oscillatory behavior. We can’t determine the value of T time constant and the D damping ratio.

Type the bode(GT2D1,GT2D2,GT2D3) command!

The 
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 is called natural frequency. The phase shift at the natural frequency is -90º, accordingly you can count the T time constant finding the -90º phase shift on the Bode diagram of the second order tag. The Fig. 16 shows it to you. You can also see on Fig. 16 the smaller value of damping ratio causes higher peak value of the amplitude at the natural frequency and sharper transition on the phase diagram.
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Figure 2.16. Bode diagram of second order tag with different D values

2.4 Basic transfer functions in cascade

A lot of generally used transfer functions are composed from the basic transfer functions in cascade. For example: HPT1 dead time first order, IT1 integral first order, PT3 third order, and so on. 

The HPT1 and IT1 are very popular to substitute a real measured curve of a process. 

Substitution with HPT1

The all transfer function without integral effect, other word have final value can be substituted with HPT1, or HPT2, or PT3. The later two require computer. 

The transfer function of HPT1 is: 
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<2.6.>

where Tg is the approximated time constant and Tu is the approximated delayed time.

If we have a reaction curve of the process energized it by a unit step shape signal, the first fitting the line of maximum slope of the real curve. Where this line crosses the beginning and the final value of the reaction curve provides the Tu and the Tu + Tg approximated time values. See Fig. 2.17!

The ratio of the amplitude of reaction curve and input signal provides the gain of the approximated model of process.
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Figure 2.17. Approximated HPT1 model of a reaction curve

As for the Fig. 2.17 the 
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Substitution with IT1

The all transfer function witches have integral effect, other word haven’t final value can be substituted with IT1, or HIT1, or IT2. The later two require computer. The transfer function of IT1 is: 
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<2.7.>

where Tg is the approximated time constant and TI is the integral time constant.

If we have a reaction curve of the process energized it by a unit step shape signal, the first is the extension of the linear section of the reaction curve.
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Figure 2.18. Approximated IT1 model of a reaction curve

As for the Fig. 2.18 the 
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2.5 Transfer functions in parallel

The most wide-spread compensation is the PID. In the industrial area the P, I, and D effect are used in parallel three channels, and differential first order DT1 is used instead of pure D tag.

Note:  Often used solution is that P, I and D effects are generated in feedback.
In the industrial area the ratio of the differential time TD constant and T first order time constant is 
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 The AD is called differential gain.

There are differences between the American form and the European form of the PIDT1 compensator are shown in Fig. 2.19.a and 2.19.b.
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	Figure 2.19.a. 

American form of PIDT1


	Figure 2.19.b. 

European form of PIDT1


The effect of the two type of the PIDT1 compensator is same, if:
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<2.8.>

Depending on the status of the switches of the channels there are P, I, PI, PDT1, and PIDT1 compensator.

If the model of a process described by transfer function without integral effect then the PI, PIDT1, maybe P compensator are practicable. The type of the compensator depends on the ratio of the approximated time constant Tg and the approximated delayed time Tu.

If the model of a process described by transfer function with integral effect than the P, PDT1 maybe PIDT1 compensator are practicable.

Hereinafter we will use the European form of the PIDT1 compensator. 

PI compensator

The most used compensator for plant without integral effect is the PI.

The transfer function


[image: image95.wmf]1

1

()1

I

PICC

II

sT

GsKK

sTsT

ìü

ïï

+

ïï

=+=

íý

ïï

ïï

îþ

 


<2.8.>

Defining this transfer function in MATLAB requires a concrete value of the integral time constant T=2.4 sec. and KC=2 gain.

Kc=2;

Gi=tf(1,[2.4 0])

Gpi=Kc*(1+Gi)

The unit step response of the PI compensator is shown on the Fig. 2.20.
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Figure 2.20. Unit step response of PI compensator
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Figure 2.21. Bode diagram of PI compensator

On the Fig. 2.20 you can read the 
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 It is clear the unit step response of a pure proportional P (Fig. 2.6) and integral I (Fig 2.8) tag in parallel.

On the Fig. 2.21 you can read the
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PDT1 compensator

In the industrial area the most used compensator for plant with integral effect is the P, but in the circuit technique The PDT1 compensator is often applied. The DT1 is a pure differential D and first order T1 tag in cascade, and the PDT1 is a proportional P and DT1 tag in parallel.

The transfer functions of PDT1 compensator:
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<2.9.>

Defining this transfer function in MATLAB requires a concrete value of the KC=2 gain and the differential time constant TD=0.9 sec. and the differential gain AD=9, and so the time constant of the first order part of DT1 is T=0.1 sec.

Kc=2;

Gdt=tf([0.9 0],[0.1 0])

Gpdt=Kc*(1+Gdt)

The Fig. 2.22. shows the unit step response of the PDT1 compensator. On the Fig 2.22 you can read the 
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From the Laplace final value theorem:
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<2.10.>

From the formula 2.10:
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<2.11.>

[image: image113.png]Figure 1
Eile Edit View Ineert Took Desktop Window Help

NEde | hRRO9EL- 20| aD

System: Gt Step Response
22 - T (sec) 0
Ampitude: 20

M e ppeak=20

System: Gpet
Time (sec) 0593
Amptue: 205

03
Time (sec)





Figure 2.22. Unit step response of PDT1 compensator

The Fig. 2.23. shows the Bode diagram of the PDT1 compensator. On the Fig 2.23 you can read the 
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<2.12.>

Using the formula 2.12, assuming the differential gain 
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Figure 2.23. Bode diagram of PDT1 compensator

2.6 Transfer functions in feedback

Sometimes you put the compensator in the feedback branch or create a compensator with feedback of transfer function. For example:
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Figure 2.24. Eliminate the integral effect of an actuator with proportional feedback

The transfer function:
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<2.13.>

The G(s) is a first order tag.

Note: In the industrial area it is used positioning an actuator or in the two or three point controller.

2.7 Exercises

1. Define the time constant and the gain of the 
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 transfer function from the step response and from the Bode diagram! Save the figures with comments!

2. Define the transfer functions in cascade resulting from the following figure, and indicate where to read the time constant and the integral time constant on the figure of the unit step response and on the figure of Bode diagram!
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3. Define the transfer functions in parallel resulting from the following figure, and indicate where to read the necessary values to define the gain, the differential time constant and the first order time constant on the figure of the unit step response and on the figure of Bode diagram!
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4. Define the transfer functions in feedback resulting from the following figure, and indicate where to read the necessary values!
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